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Abstract
Using improved Wigner–Brillouin perturbation theory we study resonant
electron–phonon interaction in a semiconductor quantum dot. We predict
pinning of the excited energy levels to the ground state level plus one optical
phonon as a function of the strength of the confinement potential. This effect
should be observable through optical spectroscopic measurements.

1. Introduction

Recent years have witnessed an enormous amount of interest in the area of quantum dots.
Quantum dots are ultrasmall structures in which the motion of the charge carriers is confined
in all spatial directions. The natural length scales in a quantum dot are of the order of a
few nanometres and because of this reduced dimensionality it contains a discrete number of
electrons and has a discrete energy spectrum. In this sense quantum dots can be regarded as
ideal quantum systems and are expected to exhibit pronounced quantum effects. Quantum
dot systems, in fact, offer an excellent ground for testing quantum mechanics and therefore
they have an intrinsic appeal from the point of view of fundamental physics. Because of
the quantum size effect quantum dot structures exhibit many new physical properties that are
very interesting and are quite different from those of bulk systems [1]. Furthermore, quantum
dots can be fabricated in both two and three dimensions and can also be prepared in different
geometrical shapes and sizes. This design flexibility together with very many novel physical
effects have made quantum dots technologically highly promising for potential applications
in optical and semiconductor-based microelectronic devices. An issue of recent interest has
been the role of electron–phonon interaction in the electronic properties of quantum dots [2–5].
The electron–phonon interaction energy scale is comparable to the other relevant energy scales
involved in a quantum dot and therefore it is expected that the electron–phonon interaction will
play an important role in determining the energy relaxation and other properties of quantum
dots. In this connection a number of authors have investigated the polaronic effects in quantum
dots [6]. Since most quantum dots available today are made of polar semiconductors, it is
natural to expect the formation of polarons in these systems as was recently demonstrated
experimentally [6, 7]. Several theoretical calculations have revealed that polaronic effects in
semiconductor quantum dots are considerably enhanced if the dot sizes are reduced below a
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few nanometres. Recently, Mukhopadhyayand Chatterjee [8] showed that the phonon-induced
Zeeman splitting in a two-dimensional parabolic quantum dot is strongly size dependent for
small dots and decreases very rapidly with decreasing dot size. In the present paper we suggest
another important polaronic effect in a quantum dot, namely, the pinning effect, which should
be experimentally observable.

The phenomenon of the pinning effect is quite well known in bulk polar materials in the
presence of a large magnetic field (see [9] and references therein). For example, it has been
observed both theoretically and experimentally that in the case of bulk systems the first excited
Landau state level gets pinned to the ground state (GS) Landau level plus one longitudinal
optical (LO) phonon energy if the strength of the externally applied magnetic field is increased
to a sufficient large value. Since the magnetic field behaves in some sense like a harmonic
oscillator potential, one would also expect to observe a pinning effect in a quantum dot (even in
the absence of an external magnetic field) just on increasing the lateral parabolic confinement
which is equivalent to increasing the frequency of the confining parabolic potential. The aim
of the present paper is to show theoretically the existence of such a pinning effect in a parabolic
quantum dot.

We consider a single electron moving in a symmetric parabolic quantum dot and interacting
with the bulk LO phonons of the host lattice. We perform our calculations for both two- and
three-dimensional quantum dots. The assumption of parabolic confinement is consistent with
far-infrared optical spectroscopic measurements and the generalized Kohn theorem [10]. We
shall however neglect in our calculation the effect of the interface phonon modes for the
sake of mathematical simplicity. A recent microscopic study by Rücker et al [11] has shown
that electron–LO-phonon coupling in a quantum wire does not significantly differ from that
obtained from the bulk phonon model. We believe that this conclusion should also apply to our
quantum dot system. Of course, one would certainly expect some quantitative changes in the
results if confined phonon modes [12] were included but the qualitative features are expected
to remain the same. Since most semiconductor quantum dots have a weak electron–phonon
coupling, perturbative calculations should in general be acceptable. However, it turns out that
the Rayleigh–Schrödinger perturbation theory (RSPT) [13] can be used only for the GS energy
calculation, if one is interested in the entire range of the confinement length. For the excited
states (ESs) of a parabolic quantum dot, RSPT would fail for certain values of the confinement
length for which the ESs become unstable with respect to the emission of LO phonons.
One should therefore use degenerate perturbation theory or Wigner–Brillouin perturbation
theory (WBPT) for such cases. We will employ in the present work an improved version of
WBPT which is known as the ‘improved Wigner–Brillouin perturbation theory’ (IWBPT) and
has been found to give the correct pinning behaviour in bulk systems.

2. Theoretical formalism

The Hamiltonian for our system is given by

H ′ = − h̄2

2m
∇′2

r ′ +
1

2
mω2

hr ′2 + h̄ωL O

∑
�q ′

b†
�q ′b�q ′ +

∑
�q ′

(V ′
q ′e−i �q ′ · �r ′

b†
�q ′ + h.c.), (1)

where m is the effective mass of the electron, ωL O is the optical phonon frequency, ωh measures
the confining strength of the parabolic potential, b†

q(bq) is the creation (annihilation) operator
for a LO phonon of wavevector q and Vq is the electron–phonon coupling coefficient. The
Hamiltonian in units where h̄ = m = 1 reads

H = H0 + Hep = He + Hp + Hep, (2)
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with

He = − 1
2∇2

r + 1
2ω2r2, (3a)

Hp =
∑

�q
b†

�qb�q, (3b)

Hep =
∑

�q
(Vqe−i�q·�r b†

�q + h.c.), (3c)

where everything is in dimensionless units and ω = ω/ωL O , and |Vq |2 = 2
√

2πα/V q2 for
3D and |vq |2 = √

2πα/q A in 2D, α being the electron–phonon constant. The second-order
perturbative correction to the electron self-energy due to the electron–phonon interaction is
given by

�En = −
∑

j

∑
�q

|〈φ0
j (�r)|Vq exp(−i�q · �r)|φ0

n(�r)〉|2
E0

j − E0
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, (4)

where the energy of the whole system is given by En = E0
n +�En. The energy of the electronic

part will be E0
j = ( j1 + · · · + jN + N/2)ω, where N = 2 for 2D and N = 3 for 3D systems.

Here �n = 0 leads to the RSPT which gives accurate results for the GS and for ω � 1.
In the case of WBPT �n = �En which can account for the splitting of the degenerate
energy levels. �n = �En − �E RS PT

0 gives an IWBPT which leads to the correct pinning
behaviour [9, 14] for small α. �E RS PT

0 is the correction for the electron–phonon interaction
to the GS energy using the RSPT method. It is easy to see that �E I W B PT

0 = �E RS PT
0 for all

ω.
The wavefunction of the unperturbed harmonic oscillator problem is given by

|φN D
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To perform the summation in equation (4) we follow [9] and insert

1

E j − En − �n + 1
=

∫ ∞

0
e−(E j −En−�n +1)t dt, (6)

and after using the transformation function of the N-dimensional harmonic oscillator one finds
the following expression for the energy correction [13]:

�En = − α√
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After integrating over �r and �r ′ the following expressions for the energy corrections of the GS
and the first ES can be obtained:
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where B(x, y) is the beta function.
To study the splitting and pinning of the energy level En we are interested in the region

where nω ≈ 1 and ω → ∞. The electronic GS plus one phonon is degenerate with the electron
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in the first ES. When nω � 1, the RSPT method is no longer applicable and one has to use
degenerate perturbation theory, i.e. WBPT or its improved version (IWBPT), to calculate the
energy of the system self-consistently. In the region 1 − �n � nω, the dominant contribution
comes from the second term of equation (8b) and we obtain

�E1 = − α

4N

�
(

N−1
2

)
�

(
N
2

)
√

ω

1 − �1 − ω
. (9)

When ω = 1, the electron–phonon interaction lifts the degeneracy of the energy level E1

and E0 + (one phonon). The splitting of the first ES at ω = 1 is twice
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In the large-ω limit, we found to lowest order in α
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and �E RS PT
0 is given by [13]
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For large confinement frequency the energy levels are pinned to E0+1. This is the so-called
pinning effect which should be observable experimentally.

In the limit ω → 0, non-degenerate perturbation theory, i.e. RSPT, has to be used. The
energy correction due to the electron–phonon interaction is given by [13]

�E RS PT
0 = −α

2
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π

�
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(
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2

)
(
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8
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)
. (12b)

3. Numerical results and discussion

In figure 1 we show the unperturbed energy spectrum (dotted lines) together with the energy
of an electron in a parabolic GaAs quantum dot (α = 0.07) in the presence of the electron–
LO-phonon interaction as a function of the confinement frequency ω. We have presented our
results for both 2D (full curves) and 3D (dashed curves) quantum dots. The modified energies
for the 2D and 3D systems have been obtained from the self-consistent solution of equation (8b)
for ω less than 1 for the first ES. To obtain the modified energies for ω-values larger than the
above value, we have used equation (9) in order to reduce the numerical error.

One can easily see that in the presence of the electron–phonon interaction the electronic
energy levels are shifted to lower energies and this is a clear manifestation of the polaronic
effect in a quantum dot. It is also clear that the polaronic effect is more pronounced in a 2D
quantum dot than in a 3D dot. One can furthermore notice that at ω ≈ 1, the first ES energy
level does not cross the GS energy plus one LO phonon energy; rather it bends downward
because of the polaronic effect. A similar behaviour is observed for the second ES at ω ≈ 1/2.
These behaviours, in fact, follow from Von Neumann’s non-crossing theorem and lead to
resonant splittings of the degeneracies that exist in the unperturbed system. We would like to
emphasize that these splittings should be observable through far-infrared optical spectroscopic
measurements at the right values of the confinement frequency or the effective dot size. Finally,
the most interesting observation that one can make from figure 1 is that when the confinement
frequency becomes very large, all the energy levels get pinned to the GS energy level plus one



The pinning effect in a parabolic quantum dot 8009

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
0

GS
+1-phonon n=2

n=1

n=2 n=1

n=0

n=0

E
n
/ h

ω
LO

ω/ω
LO

–

Figure 1. Energy levels (En/h̄ω0) of an electron in a parabolic quantum dot in both two (solid
curves) and three dimensions (thick dashed curves) as a function of the confinement frequency
ω/ωL0 for α = 0.07. The dotted curves are the energy levels of the non-interacting electron.
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Figure 2. The energy difference between two consecutive energy levels (En − En−1)/h̄ω0 of an
electron in a 2D (solid curves) and in a 3D (thick dashed curves) parabolic dot as a function of the
confinement frequency ω/ωL0 for α = 0.07.

LO phonon energy. This pinning effect is quite well known in the case of bulk polar materials
in the presence of an externally applied magnetic field. However, the interesting point that we
would like to emphasize here is that it is possible to observe the pinning effect in a quantum dot
even in the absence of any external magnetic field just by increasing the lateral confinement.

In figure 2, we have shown the energy difference between two consecutive electronic
energy levels both for 2D (solid curves) and for 3D (dashed curves) as a function of the
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confinement frequency of the dot. One can clearly see that the difference between the first
ES energy and the GS energy becomes equal to the LO phonon energy in the limit where the
confinement frequency becomes very large, while the difference between the second excited
energy and the first ES energy goes to zero in the same limit. This is again a clear manifestation
of the pinning effect.

4. Conclusions

In conclusion, we calculated the energy levels for an electron in a parabolic quantum dot in the
presence of electron–LO-phonon interaction using the ‘improved WBPT’ to second order in the
electron–phonon coupling constant. We showed that the electronic energy levels are lowered
in energy by the polaronic effect and there are resonant splittings of the ES energy levels at
certain values of the confinement frequency. In the limit of strong confinement we found that
all the ES energy levels are pinned to the GS energy level plus one LO phonon energy. We
applied our results to a GaAs quantum dot for the cases of both two- and three-dimensional
confinement. In our opinion, the pinning effect proposed here for a parabolic quantum dot
is a very interesting theoretical observation and should be experimentally verified through
far-infrared intraband optical spectroscopic measurements, which would give clear and direct
evidence of the polaronic effect in a quantum dot. Such a study would give information on
the position of the polaron energy levels, which provides information complementary to the
recent polaron lifetime measurements of Sauvage et al [7].
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